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2. Executive Summary 

Description 

By default, the encryption and decryption of data for the MVP-/Pilot-Phase (see References) 
takes place on the plattform Justitia.Swiss (OPE, on-plattform encryption). 

As the platform's functionalities are developed, the option to use end-to-end encryption (E2EE) 
between judicial authorities is being prepared for easy activation, should the requirement be 
permitted from a compliance perspective and requested by the authorities. 

The conclusions of the present concept are: 

 Communication between lawyers/lawyer offices and administrative bodies uses on-
platform encryption by default. 

 The design of the platform needs to be flexible and future-proof. Thus, E2E encryption 
should be supported in specific use cases. 

 Communication between trusted entities can use E2E encryption. The use of E2E 
encryption requires additional effort on the clients (such as local key management) and 
makes checking for malware on the platform impossible. 

Motivation 

The suggested approach is flexible and future-proof.  The design can be adapted to 1) add extra 
security requirements on a case-by-case basis and 2) adapt to the (changing) requirements given 
by the law (BEKJ, see References). 

Malware checks by the platform are considered to be essential (and Art. 27, Abs. 2 of the 
"Botschaft zum BEKJ", see References). 

Assumptions about the IT infrastructure of entities interacting with the platform is not possible. 
Regulations regarding the IT infrastructure cannot be enforced. 

Implementation of the hybrid approach can be conducted in multiple phases. This allows 
building the foundations, thoroughly testing the fundamental parts and at later point extend the 
functionality. 

 

  



 

 

 

 Technical View Functional View Compliance View 

Step 1: 

MVP / 
Pilotbetrieb 

In the hybrid approach, 
on-platform encryption is 
used by default; for 
example for 
communication between a 
lawyer's office and an 
official administrative 
body. Using OPE allows 
the platform to check all 
data being transferred via 
the platform for malware. 

The use of a hardware 
security module (HSM) is 
part of this phase whereas 
a  public key 
infrastructure (PKI) is not 
yet required. 

 

The platform is required to 
be usable by the broad 
community and not only by 
IT experts. Users must not be 
excluded from using the 
platform due to technical 
barriers. Hence, requiring 
users to manage their own 
cryptographic material is not 
an option. Nevertheless, the 
platform should be flexible 
to cover additional/future 
(functional) requirements. 

The existing draft of 
the BEKJ law (see 
References) is 
adhered to. 

For encryption topics, 
the relevant 
requirements are the 
safeguarding of the 
information incl. 
malware-checking on 
the platform as 
defined in articles 26 
and 27 of the 
mentioned draft law. 

Step 2: 

Add-on 

The foundations of the 
platform can be extended 
to fully achieve a hybrid 
solution by supporting 
E2E encryption. This 
requires setting up a PKI 
to enable entities to check 
the authenticity of public 
keys. 

For communication 
between "trusted" entities 
(such as judicial 
authorities), they can opt 
to use E2E 
encryption which requires 
additional effort by the 
communication parties as 
they need to locally 
manage their key 
material. 

To determine whether or not 
to use  end-to-end 
encryption, judicial 
authorities can use a risk-
based approach using factors 
such as 

1) risk-taking propensity, 

2) sensitivity of the 
documents being exchanged 
via the platform, 

3) convenience of the 
platform managing 
cryptographic material, etc. 

The approach 
considers future 
changes to the law 
towards optionally 
using E2EE through 
requirements from 
stakeholders likely. 
Therefore, these 
potential requirement 
changes should be 
considered from the 
beginning (in the 
sense of a basic 
investment for the 
future). 

 

 



 

 

3. General Approach 

3.1. Principles 

 The encryption is realized on a per-dossier basis. All files ("Akten" und "Aktenstücke", 
aka "Sendung") contained in a dossier are encrypted using the dossier-specific key. 

 The encryption is conducted using OPE by default and E2EE in specific use cases (see 
Section 5). The platform also guarantees the integrity of the stored data. 

 The platform can perform encryption of selected, sensitive metadata (e.g., subject of the 
dossier). 

 The platform provides a mechanisms for users to check the authenticity of other entities. 
 Access sharing/delegation is realized with "key wrapping" (also called "key 

encapsulation"). This avoids re-encryption of the data stored on the platform. 
 In addition to cryptographic mechanisms, the platform performs strict authorization 

checks for users accessing data stored on the platform (e.g. for sub-documents within a 
file). 

 The platform assists with the key exchange between entities that opt to use E2EE. 

3.2. Definition "Entity"/"Profiles" 

We refer to "entities" as an abstraction of people/groups that interact with our platform. Each 
entity has an associated profile on the platform. The profile is created during the on-boarding 
phase or after the first login. 

We distinguish between the following entities: 

 Users / User profiles: A person who uses the platform to consult filed documents or to 
participate in electronic communication in the judicial field. 

 Authorities / Organisations / Groups / Organisation Profiles: An authority that uses the 
platform to participate in electronic communication in the judicial field (e.g., prosecutors 
office). A user might be affiliated with multiple authorities. 

 Technical users: Technical users are a subset of users that interact with the platform only 
through its API. 

3.3.  Definition "Cryptographic Profile" 

A cryptographic profile of a specific entity represents a container that contains all cryptographic 
material (such as encrypted keys) associated to that specific entity. 

For example, the cryptographic profile of entity A contains encrypted dossier keys that were 
encrypted using entity A's public key and entity A's encrypted private key (see Section 4.6). 

3.4. Public Key Infrastructure (PKI) 



 

 

Note that a PKI is only required for all entities that opt to use E2E encryption. For on-platform 
encryption (OPE) a "key server" that provides the public keys for a specific entity is sufficient 
(trust into the platform is required). Nevertheless, we assume that all profiles registered on the 
Justitia.Swiss platform obtain a public and private key pair during profile creation. 

The platform maintains an internal public key infrastructure with an internal certificate authority 
(CA). The root CA keys are stored offline in a hardware security module (HSM). An 
intermediate CA is used to issue certificates. 

Each entity that is registered on the platform has a public/private key pair. This key pair is 
generated on the client during the registration process. The generation is conducted during the 
profile creation. The process is opaque to the user and requires no interaction. 

 The public part of the key pair is registered at the PKI of the platform, which in turn 
issues a certificate that binds the public key to a unique identifier of the entity. 

 The private part of the key pair represents the "master key" for the encrypted data stored 
on the platform. 

3.4.1. Handling of private keys 

Case A: An external "key-protecting token" is used 

The private part of the key pair is stored in encrypted from in the database of the application. 

During the login process of an entity, the encrypted private key is loaded into the HSM and 
decrypted. The key required for the decryption is derived based on a key derivation function 
(KDF) which takes a user-provided token as an input. 
Thus, the private key can only be decrypted if the user is "logged in". Furthermore, only the 
private keys of active entities need to be kept inside an HSM. The encrypted private keys for 
offline entities can reside in memory. 

Case B: No "key-protecting token" is used 

The private key part of a profiles key pair is encrypted using a "profile-protecting key" and 
stored in encrypted form in memory. 

3.4.2. Requirements for PKI 

The platform's PKI needs to satisfy the following (standard) requirements: 

1. entities that have a valid profile on the platform should be able to register their public key 
at PKI. 

2. the PKI must then generate a certificate for registered public key that binds the key to the 
entity's identifier. 

3. entities must be able to check the certificates issued by the PKI. 



 

 

3.5. Hardware Security Module (HSM) 

The platform contains a hardware security module (HSM) that is used for the following four 
purposes: 

1. generation of public/private key pairs for profiles that use 1) OPE, 2) employ the 
platform for bootstrapping in E2EE.  

1. entropy source is of higher quality than software-only mechanisms (such as 
HashiCorp Vault). 

2. lower predictability compared to software-only approach. 
2. derivation and temporary storage of "profile-protecting keys" based on an 1) HSM-

internal secret key ("HSM seed") and 2) external input ("key-protecting token"). 
1. derivation is session-based. 

3. maintenance of private keys of profiles while they are active. The goal is that the private 
key (in unencrypted form) is available during a "session" inside the HSM. 
This includes:  

1. loading encrypted private keys from database. 
2. decrypting encrypted private keys of a profile (symmetric decryption) with key 

from key derivation step above. 
3. store private keys in HSM while a profile is active. 
4. encrypting private key of a profile (symmetric encryption).  

1. Reverse operation of previous step. 
2. Only needed for profile creation and rotation of public/private key pair. 

5. decrypt encrypted symmetric keys using private key (asymmetric decryption). 
4. storage of the root key for the PKI (E2EE case only). 

3.5.1. Functional requirements 

The HSM must satisfy the following functional requirements for the use-cases described above. 

1. interface from the platform using PKCS#11 
2. load / store operations from database. 
3. symmetric encryption/decryption (e.g., based on AES-GCM). 
4. asymmetric encryption/decryption (e.g., based on ECIES). 
5. storing of private keys within HSM. 
6. key derivation function with HSM-internal secrets and external input. 
7. export/import of HSM seed via HW-token and PIN 

  



 

 

3.5.2. Performance / Scale requirements 

 

Partial 
operation 

(2024-2027) 

Full operation 

(2028+) 

Concurrenct users 5'000 

15'000 

(12'000 lawyers + 20% 
judicial authority members) 

Concurrent symmetric 
encryption/decryption operations (avg.) 

85 operations per 
second 

250 operations per second 

Concurrent asymmetric 
encryption/decryption operations (avg.) 

170 operations 
per second 

500 operations per second 

Concurrent key derivations (avg.) 
35 operations per 

second 
100 operations per second 

 

  



 

 

3.5.3. HSM Interactions 

In the following, the main interactions between the HSM and the application are described. Some 
interaction such as HSM-login are omitted for clarity.  

3.5.3.1. Profile Creation / Key Rollover 

 

Creating a profile involves the following steps: 

1. Key generation of a public/private key pair for the profile to be created. 
2. Key derivation based on HSM seed (persistent secret key in the HSM) and external key-

protecting token. 
3. Encryption of the private key using the key derived in the previous step. 
4. Store the encrypted private key in the DB. 
5. The public key is:  

1. published on a key server for OPE. 
2. registered with the platform's PKI in case of E2EE. The PKI generates a 

certificate for the public key. 

  



 

 

3.5.3.2. User Login 

 

User login requires the following steps from an HSM: 

1. Key derivation based on HSM seed (persistent secret key in the HSM) and external key-
protecting token. 

2. Loading of the encrypted private key from DB. 
3. Decryption of the private key using the key derived in the previous step. The private key 

should be “maintained” in the HSM by storing it. 

3.5.3.3. Dossier Access 

 

In case a user wants to access a dossier, the HSM needs to conduct the following steps: 

1. Get encrypted dossier key from database 
2. Decrypt encrypted dossier key using private key (currently stored in HSM). 



 

 

3. Pass the dossier key to application. The application should cache the dossier key among 
multiple requests. 

4. Design 

In the following, we describe which steps are required to: 

1. create a profile 
2. create a dossier 
3. share access to a dossier (both OPE and E2EE variants) 
4. use shared access to a dossier 

4.1. Creation of a Profile 

The creation of a profile includes the following steps: 

1. generation of public/private key pair in the HSM 
2. fetching the key-protecting token 
3. deriving the profile-protecting key 
4. encrypting the private key using the profile-protecting key 
5. publishing the public key at a key server (OPE) / registering the public key with the PKI 

(E2EE) 

4.2. Creation of a Dossier 

 

4.2.1. Step 1: Generation of key dossier1 

The platform locally generates a symmetric key dossier1 using a pseudo-random number 
generator (PRNG). 



 

 

4.2.2. Steps 2a & 2b: Encryption and storage of dossier documents 

The dossier1 key is used to encrypt all the documents of dossier 1 and store them in the dossier 
store (blob storage). 

Note: Encryption and storage of the document is conducted asynchronously. 

4.2.3. Steps 3a & 3b: Encryption and storage of the dossier1 key 

The key dossier1 is encrypted using entity A's public key and stored in the database of the 
platform. 

4.3.  Sharing Access to Dossier 1 with Entity B (OPE 
Variant) 

4.3.1. Steps 4a & 4b: Encryption and storage of the dossier1 key for entity B 

To allow entity B access to dossier 1, encrypts the dossier1 key using the public key of entity B 
and stores it in the database of the platform. 

4.4. Entity B accesses Dossier 1 

Entity B logs into the platform and wants to access documents of dossier 1. 

4.4.1. Steps 5a & 5b: Derive profile-protecting key 

The derivation of the profile-protecting key uses a key derivation function with the HSM seed 
and the key protecting token as an input. The key protecting token is fetched as an external input. 

4.4.2. Steps 6a & 6b: Decrypt entity B's private key 

The private key of entity B is decrypted using the profile-protecting key and and stored inside the 
platform's HSM memory. The private key is maintained in the HSM while the user is active. 

4.4.3. Steps 7a & 7b: Decrypt dossier1 key 

The HSM fetches the encrypted dossier1 key from the database and decrypts it using entity B's 
private key. 

4.4.4. Steps 8a & 8b: Decrypt documents of dossier1 

The applications obtains the decrypted dossier1 key from the HSM and can use it to decrypt the 
documents of dossier1. 



 

 

4.4.5. Step 9: Entity B can access the documents of dossier1 

Finally, entity B has access to the documents of dossier1 

4.5. Sharing Access to Dossier 1 with Entity B (E2EE 
Variant) 

In the following case, entity B uses the E2EE variant to access dossier1 and local key 
management for the private key is used. Accordingly, the steps 5-6 are omitted. 

 

5. Usage Scenarios 

5.1. Scenario 1: Communication from a Lawyer's Office to 
Authority using OPE 

This is the default communication scenario. 

The first scenario focuses on communication using the J40 platform between a lawyer's office 
(or simply lawyer) to an official authority. The communication happens under the following 
circumstances: 

 The authority does neither "trust" the lawyer nor the documents submitted by the lawyer 
(e.g., they could contain malware). 

 The authority opts for malware checks on the platform. 

Consequently, on-platform encryption (OPE) is being used to encrypt the files submitted by 
either of the entities. These files could be submitted either via the API or the SPA. 
Before encrypting a file the platform checks the documents for malware using the on-platform 



 

 

malware scanning service. Finally, the platform shares access to the files to the receiving entity 
using the steps described in section 4.3. 

5.2. Scenario 2: Communication between Authorities using 
E2EE 

This scenario describes communication using the J40 platform between two judicial authorities 
(such as courts, cantonal bureaus, etc.) and considers the following settings: 

 Both authorities "trust" each other and the documents submitted via the platform by 
either of the authorities. 

 Both authorities have a local malware scanning solution installed (e.g., in their local IT 
infrastructure). 

 Furthermore, the authorities have a high security demand and don't want to rely on the 
platform for encryption of the files. 

Consequently, end-to-end encryption (E2EE) is employed where the public/private key pair is 
managed by the authorities. 

This scenario includes the following steps: 

1. The authorities use the platform to exchange their public keys and check the authenticity 
of the public keys via the PKI provided by the platform. 

2. Both authorities signal the platform that the files exchanged via the platform for this 
specific case must use E2E encryption. 

3. The authorities exchange files either using the API or the SPA. 
4. Each file is locally checked for malware upon receival. 

5.3. Scenario 3: Communication from a Lawyer's Office to 
Authority using Hybrid Encryption 

 lawyer (or a lawyer's office) wants to communicate with an authority. 

 The authority does not trust the lawyer. 
 The authority opts for malware checks on the platform. 
 The authority wants to manage its own keys using their local IT infrastructure. 
 OPE for the lawyer and E2EE encryption for the authority is being used. 

Note: no E2EE guarantees are given in this scenario. 

  



 

 

6. Technical Scenarios 

6.1. Membership changes for authority profiles 

In case of membership changes with authority profiles, the following options are possible: 

1. changing the dossier key and re-encrypting all data in the dossier (full re-encryption) 
2. changing the dossier key and re-encrypting all future data in the dossier (lazy re-

encryption) 
3. not changing the dossier key (previous authority members potentially have access to 

future contents of the dossier) 

6.2. Change of a profile's key protecting token 

Changing the key protecting token implies that the key used to encrypt the private key part 
cannot be derived correctly anymore. Thus, the following steps are required: 

1. the private key part needs to be loaded into the HSM and decrypted. 
2. a new master key needs to be generated based on the new key protecting token. 
3. the master key is used to re-encrypt the private key and store it in the entity's 

cryptographic profile. 

6.3. Change of a profile's public/private key pair 

Changing a public/private key pair requires re-encrypting all dossier keys of the corresponding 
profile with the new public key. 

1. a new public/private key pair needs to be generated. 
2. the new public key needs to be published at the key server (OPE) / registered with the 

platform's PKI (E2EE). 
3. the private key part needs to be loaded into the HSM and decrypted. 
4. The dossier keys of the profile need to be decrypted and re-encrypted using the new 

public key. 

6.4. Change of a dossier key 

Changing the dossier key requires re-encryption of the dossier data. Given that a dossier might 
be large re-encryption of the content should be avoided in most cases. 
In case a dossier key gets compromised, re-encryption of the dossier data cannot be avoided. 
Changing the dossier keys involves the following steps: 

1. Generate a new dossier key. 
2. Re-encrypt the data with the new dossier key. 



 

 

3. Encrypt the dossier keys with the public key of the corresponding entity and store them in 
the respective profiles. 

7. References 

BEKJ: https://www.bj.admin.ch/bj/de/home/staat/gesetzgebung/e-kommunikation.html 

Botschaft zum BEKJ: https://www.fedlex.admin.ch/eli/fga/2023/679/de 

Appendix 

Cryptographic Algorithms 

In the following, we list cryptographic algorithms that could be considered for the 
implementation of the data at-rest encryption for Justitia.swiss. 

The selection is limited to 1) up-to-date and 2) widely-used ciphers. It is important that the 
selected algorithms can be used in the Springboot backend (using a library) and in the HSM. 

1.1. Recommendation 

We recommend the following selection of algorithms: 

 Symmetric cipher: AES256-GCM 
 Asymmetric cipher: ECC 

 ECIES (ECDH + AES256-GCM + HMAC-SHA3-256) for encryption 
 ECDH (secp384r1) for key agreement. 
 ECDSA (secp384r1) for signatures. 

 Hash function: SHA3-384 
 MAC algorithm: HMAC-SHA3-256 
 Key derivation function:  

 Derivation from a password: Argon2 
 Derivation from key material (e.g., symmetric key): HKDF with SHA3-256 as a 

hash function (to get 32 B keys)  

Our recommendations also are highlighted below. 

For the selection of key / ciphertext / hash lengths was compared to the current recommendations 
which are summarized here: https://www.keylength.com/en/compare/ 

  

https://www.bj.admin.ch/bj/de/home/staat/gesetzgebung/e-kommunikation.html
https://www.fedlex.admin.ch/eli/fga/2023/679/de
https://www.keylength.com/en/compare/


 

 

1.2. Quantum-resilient cryptography 

This section is added for completeness. But not considered for MVP. 

Quantum-resistant cryptography is designed to be secure against attacks from quantum 
computers. Unlike traditional cryptography, which relies on mathematical problems that are 
difficult for classical computers to solve but can potentially be solved by quantum computers, 
quantum-resistant cryptography uses mathematical problems that are believed to be difficult or 
impossible for both classical and quantum computers to solve. This makes it more secure against 
potential attacks from quantum computers, which are predicted to be much faster and more 
powerful than classical computers at certain tasks. Quantum-resistant cryptographic algorithms 
are currently being standardized and implemented in various applications. While it is still 
uncertain whether and when quantum computers will become a practical threat to existing 
cryptographic systems, it is recommended that quantum-resilient cryptography is considered for 
systems deployed by 2025 and beyond (e.g., NSM 10 from US government). 

1.2.1. Impact of quantum computers on standard cryptography 

Quantum computers could potentially be used to break some of the algorithms that are 
commonly used to implement asymmetric cryptography. For example, quantum computers could 
be used to solve the discrete logarithm problem (Shor's algorithm), which is the basis for many 
popular asymmetric algorithms such as Diffie-Hellman and DSA. Consequently, if a large-scale 
quantum computer could be built then, then current public key cryptography systems need to be 
assumed to be broken. To be specific, a k-bit number can be factored in time of order O(k^3) 
using a quantum computer of 5k+1 qubits (using Shor's algorithm). Accordingly, 256-bit 
number (e.g. Bitcoin public key) can be factorized using 1281 qubits in 72*256^3 quantum 
operations (~ 1.2 billion operations). 

It is currently not clear yet how much of a threat quantum computers pose to symmetric 
cryptography (e.g., AES) and cryptographic hash functions (SHA3, blake3). For specific ciphers 
such as AES, it is known that Grover's algorithm will reduce symmetric cipher security by a 
square root and thus longer keys are needed (e.g., AES-256). A similar effect is assumed for 
cryptographic hash functions and thus longer output formats should be considered. Nevertheless, 
cryptographic hashes (like SHA2, SHA3, BLAKE2) are currently considered to be quantum-
safe. For more information, see this paper in the attachments. 

1.2.2. Quantum-resilient cryptography not in MVP 

 The standardization process of quantum-resilient cryptography is still in progress. So far, 
CRYSTALS-Kyber for encryption and CRYSTALS-Dilithium, FALCON, and 
SPHINCS+ for digital signatures have been selected by NIST to be standardized. 

 The security of quantum-resilient mechanisms have not been extensively analysed yet. 
Recently an attack on SIKE has been proposed (https://eprint.iacr.org/2022/1026.pdf). 

 Quantum-resilient cryptography is currently being tested by companies (e.g., Cloudflare 
and Google). Practicality problems (e.g., due to the huge signature/ciphertext size) are 
expected. 

https://eprint.iacr.org/2022/1026.pdf


 

 

Accordingly, in the design and implementation of the MVP, quantum-resilient cryptography 
is not considered. 

At a later stage, the use of quantum-resilient cryptography should be re-evaluated. 

2. Algorithms for Consideration 

Below we list a selection of algorithms/ciphers for consideration to be used in the encryption 
concept of the Justitia.swiss platform. 

2.1. Symmetric Cryptography 

Symmetric ciphers in AEAD (Authenticated Encryption with Associated Data) mode are 
cryptographic algorithms that provide both confidentiality and authenticity for the data they 
encrypt. The following symmetric ciphers in AEAD mode are extensively used in practice: 

1. AES-GCM (Advanced Encryption Standard in Galois/Counter Mode): AES-GCM is a 
symmetric cipher that uses the AES block cipher algorithm in combination with a 
cryptographic mode of operation called Galois/Counter Counter Mode (GCM) to provide 
confidentiality and authenticity for the data it encrypts. It is widely used in a variety of 
applications, including TLS 1.3, secure storage systems, and encrypted messaging. 
Furthermore, AES has hardware acceleration (AES-NI) on most modern CPUs. 

2. ChaCha20-Poly1305: ChaCha20-Poly1305 is another symmetric cipher that uses the 
ChaCha20 stream cipher algorithm (published in 2008 by DJ. Bernstein) in combination 
with the Poly1305 message authentication code (MAC) algorithm (published in 2005 by 
DJ. Bernstein) to provide confidentiality and authenticity. It is often used as an 
alternative to AES-GCM if no hardware support for AES exists, as it has a lower 
computational overhead and can be accelerated using vector instructions. 
There also exists the XChaCha20-Poly1305 is a variant that uses an extended nonce to 
provide even higher security and resistance to attacks. 

3. Salsa20-Poly1305: Salsa20-Poly1305 is another symmetric cipher that uses the Salsa20 
stream cipher algorithm in combination with the Poly1305 MAC algorithm to provide 
confidentiality and authenticity. It is similar to ChaCha20-Poly1305, but it has a different 
structure and design, which makes it more resistant to certain types of attacks. There also 
exists the XSalsa20-Poly1305 is a variant that uses an extended nonce to provide even 
higher security and resistance to attacks. 

The choice of which cipher to use in a particular application depends on factors such as the level 
of security required, the computational resources available, and the nature of the data being 
encrypted. Given that the CPUs used to run the Justitia.swiss platform support AES-NI, an AES-
based cipher is used for symmetric encryption. 

  



 

 

2.2. Asymmetric Cryptography 

Asymmetric cryptographic encryption algorithms are a type of cryptographic algorithm that uses 
two different keys, a public key and a private key, to encrypt and decrypt data. Widely 
used  asymmetric cryptographic encryption algorithms include: 

1. RSA (Rivest-Shamir-Adleman, 1977): RSA is a widely-used asymmetric encryption 
algorithm that is based on the mathematical problem of factoring large numbers into their 
prime factors. RSA is widely used in applications such as secure communication, digital 
signatures, and secure storage. Compared to ECC, RSA requires much longer keys and 
signatures are required. Furthermore, it is expected that RSA is heading towards the end 
of its tenure. 

2. ECC (Elliptic Curve Cryptography, introduced in 1985 by Victor Miller and Neal 
Koblitz): ECC is an asymmetric encryption algorithm that is based on the algebraic 
structure of elliptic curves over finite fields. It is considered to be more secure and 
efficient than RSA, and is often used in applications such as internet protocols, secure 
storage systems, and encrypted messaging. There exist multiple sub-categories of ECC: 
ECDH (Elliptic Curve Diffie-Hellman) or ECMQV (Elliptic Curve Menezes-Qu-
Vanstone) for key exchange/key agreement, ECDSA (Elliptic Curve Digital Signature 
Algorithm) for digital signatures (ECDSA was proposed around 2001 by Don Johnson, 
Alfred Menezes, and Scott Vanstone), and ECIES (Elliptic Curve Integrated Encryption 
Scheme) to securely exchange encrypted messages.  
Note that ECIES is a hybrid algorithm and thus a ECDH key agreement in combination 
with a symmetric cipher (such as AES) is used. 

1. Possible curves: https://safecurves.cr.yp.to/ 
2. Alternatives to ECDSA: EdDSA (e.g., Ed25519). Ed25519 was proposed in 2011 

by Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin 
Yang. 

3. ECDSA signatures change each time based on the nonce used, whereas EdDSA 
signatures do not change for the same set of keys and the same message. 

4. ECDSA and EdDSA typically have equivalent performance and security levels. 
5. ECDSA has a random nonce value created within the signature creation, whereas 

EdDSA does not. In ECDSA, we need to be careful in making sure that we do not 
reuse this nonce value, and that it is random. 

2.3. Hash Functions 

Cryptographic hash functions are a type of mathematical function that takes a digital input of any 
length and produces a fixed-length digital output, known as the hash value. These functions are 
designed to be one-way functions, meaning that it is computationally infeasible to reverse the 
function to obtain the original input.  This makes them useful for ensuring the integrity of digital 
data, because if the data has been modified in any way, the hash value will also change, allowing 
the recipient of the data to detect any tampering. 

https://safecurves.cr.yp.to/


 

 

The following cryptographic hash function families could be considered for use in the 
Justitia.swiss platform: 

1. SHA-2 (Secure Hash Algorithm 2): SHA-2 is a set of cryptographic hash functions are 
built using the Merkle–Damgård construction, from a one-way compression 
function itself built using the Davies–Meyer structure from a specialized block cipher. 
SHA2 was published by the NSA in 2001. The following functions are contained in the 
familiy: SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, SHA-512/256. 

2. SHA-3 (Secure Hash Algorithm 3): SHA-3 is the latest member of the Secure Hash 
Algorithm family of standards, released by NIST on August 5, 2015. SHA-3 is a subset 
of the broader cryptographic primitive family Keccak. The NIST standard defines the 
following instances with different output lengths: SHA3-224, SHA3-256, SHA3-384, and 
SHA3-512. SHA3 is designated to be the successor of SHA2. 

3. BLAKE3: BLAKE is a cryptographic hash function based on the ChaCha stream cipher, 
but a permuted copy of the input block, XORed with round constants, is added before 
each ChaCha round. BLAKE3 has a binary tree structure, so it supports a practically 
unlimited degree of parallelism (both SIMD and multithreading) given long enough 
input. The hash function was designed by Jack O'Connor, Jean-Philippe Aumasson, 
Samuel Neves, and Zooko Wilcox-O'Hearn and published in 2020. Thus, BLAKE3 is a 
relatively new hash function. 

2.4. Message Authentication Code (MAC) Algorithms 

Message authentication codes (MAC) are a short piece of information, known as a tag, that is 
calculated based on the contents of a message and a secret key. The MAC is used to verify the 
authenticity and integrity of a message, ensuring that it has not been altered in any way. 

1. HMAC (Hash-based Message Authentication Code) uses a cryptographic hash function 
in combination with a secret key to compute a MAC.  

1. Example: HMAC-SHA512 
2. CMAC (Cipher-based Message Authentication Code) uses a symmetric cipher, such as 

AES, in combination with a secret key to provide message authentication.  
1. Example: AES-CMAC 

3. GMAC (Galois/Counter Mode Message Authentication Code) uses the same underlying 
encryption technique as GCM (Galois/Counter Mode) to provide authenticity for a 
message.  

1. Example: AES-GMAC 

2.5. Key Derivation Functions 

A key derivation function (KDF) is a cryptographic algorithm that is used to generate keys from 
a secret value, such as a password or a passphrase. It is designed to be resistant to attacks such as 
brute-force guessing, dictionary attacks, and other forms of cryptographic attack. Some examples 
of secure key derivation functions include: 



 

 

1. PBKDF2 (Password-Based Key Derivation Function 2): PBKDF2 is a widely-used key 
derivation function that uses a pseudorandom function, such as HMAC-SHA256, to 
iteratively generate keys from a password or passphrase. 

2. Argon2: Argon2 is a key derivation function that uses a combination of parallelism, 
memory-hardness, and data-dependent memory access to make it resistant to attacks such 
as dictionary attacks and GPU-accelerated brute-force attacks. 

3. Scrypt: Scrypt is a key derivation function that is designed to be resistant to hardware 
attacks, such as those using custom hardware or ASICs (Application-Specific Integrated 
Circuits). It uses a combination of parallelism, memory-hardness, and data-dependent 
memory access to make it difficult for attackers to efficiently generate keys from a secret 
value. 

4. Bcrypt: Bcrypt is a key derivation function that is based on the Blowfish block cipher 
algorithm. It uses a variable-round, salted hashing function to generate keys from a secret 
value, making it resistant to dictionary attacks and other forms of attack. 
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